

PVS Marine Engine Optimization

virtual sensor technology

www.vir2sense.com

0 0-0 0-0

Outline

- Vir2sense core competence
- Industries
- Challenges
- PVS
- Market introduction

Target group

Understanding of requirements

Product

Business model

2

Vir2sense Core Competence

Vir2sense operates a **platform of engine performance and emission models** enabling optimization of the engine's settings:

(Hardware and Software)

- to operate the engine at the least possible fuel consumption
- to respect emission legislation limits (in all test procedures)

Ship Operator's Current Situation

- High financial pressure of efficient operation
 - Fuel consumption 15t/h
 - Fuel bill 30 m\$/year
- Increasingly stringent emission legislations (Emission controlled areas NOx and SOx)
- NOx and fuel consumption are in trade-off
- Total transport capacity determined by # of ships and velocity
 - Influenced by demand and fuel price
 - Demand and fuel price prediction time << life time of ship

Flexible engines are required

spinoff 🌙

Challenges

- Solution: Continuous Emission Monitoring
 - **Problems**: lifetime/reliability, complexity and cost!
 - Offer to engine makers for emission control
 - Offer to ship owners for performance optimization and increased engine flexibility

NOx Sensors in Marine Application

• Exhaust gas exposure

- Clogging due to high ash content of HFO
- Poisoning due to high sulfur content of HFO
- Exposure time limited or expensive

Use of virtual sensors

0 0-0 0-0

What is a Virtual Sensor?

• Physical sensors:

- Sensors using a physical process to obtain the required quantity
- Accuracy
- Reliability
- Cost/Complexity

• Virtual sensors:

- "Smart" sensors which use reliable data to calculate the required quantity
- ✓ Reliability-lifetime
- 🗸 Cost
- Accuracy under changing conditions

NOx Sensors in Marine Application

• Exhaust gas exposure

- Clogging due to high ash content of HFO
- Poisoning due to high sulfur content of HFO
- Exposure time limited or expensive
- Changes in conditions
 - Changes in environmental conditions and fuel composition need to be measured and integrated into the model description
 - Component ageing not captured

0 0-0 0-0

Combination of a physical and a virtual sensor

Physically-assisted Virtual Sensor (PVS):

- Combination of a physical and a virtual sensor;
 - Lifetime/Reliability (virtual sensor)
 - Accuracy (physical sensor)
- Technology based on:

sense

- Automotive (cheap) sensor and clever sensor protection system
- **Physically-consistent,** simple models
- to be automatically retuned

- Offer to engine makers for emission control
- Offer to ship owners for performance optimization and increased engine flexibility

Phase I – Emission Control

• New Emission Control Areas

- PVS can be used as a NO_x Sensor for HFO operation
- Urea SCR control and condition monitoring
- Virtual part is used to minimize physical sensor exposure time
- Collaboration with **Engine OEM**

Access to ECU

✓Access to market

✓ Data acquisition from multiple ships

- Offer to engine makers for emission control
- Offer to ship owners for performance optimization and increased engine flexibility

vir2sense

14

International Trade

Phase II – Why Engine Optimization?

• Large volatility of market:

- Freight rate (revenue)
- Fuel price (cost)
- Interest of ship owner/operators for "more adaptable engines"

"An adaptable engine would bring significant advantages in terms of decision making when designing a vessel and in operation"

P. Renaud

Manager Efficiency & Tech. Dpt. CMAShips

CMA CGM

Baltic Dry Index 1995 Today Baltic Dry Index and Fuel Price - 2000-Today

Benefits of Engine Optimization

Test cycle type E3	Speed	100%	91%	80%	63%
	Power	100%	75%	50%	25%
	Weighting factor	0.2	0.5	0.15	0.15

- Estimated **fuel savings** with continuous engine 0 optimization 0.5-2%; Changes in settings for:
 - Changes in environmental conditions daily
 - Changes in **fuel quality/type** weekly
 - Changes in **performance demands** monthly
 - **Component aging** quarterly/yearly
- Engine rating optimization based on: 0
 - Current performance demands
 - Current bunker prices
 - Current freight rates
 - Cargo/ballast trip
- Possible fuel savings with HW and SW, or just SW 0 changes
- Use new, optimized parts without parent test 0

```
Savings for 72 MW: >120k$/yr & 1'300 MT CO,
sense
```


Engine Optimization Case Study

000

- Largest ships: >90MW ...30MCHF/yr
- Example: Old Panamax, 38MW

Fuel Savings through	Engine Optimization

Total Operating Hours	for 2016	~4500
Expected Efficiency Increase	%	23
Aprox. Current Fuel Price	\$/mt	300.0
Savings for 2016	k\$	70100

Summary

Significant market potential for PVS

- Phase I: Emission control
 - Gain access to data and develop credibility
- Phase II: Vessel optimization
 - Combat engine design uncertainty by allowing engine adaptability
 - Fuel optimization at current market and operating conditions
 - Very strong interest from vessel owners/operators

