Minimization of Vehicular Energy Demand

Capacity Area A3 investigates technologies and strategies to minimize non-propulsive energy demand of vehicles for improved efficiency. This includes the reduction of vehicle mass by replacing conventional materials such as aluminum or steel with lighter ones. To achieve this, new pro-cessing routes for high volume production of lightweight thermoplastic and bioinspired composites with outstanding mechanical properties are being developed. In addition, Capacity Area A3 elaborates a modeling framework to assess the actual energy demand of conventional and alternatively propelled vehicles, which are investigated in Capacity Areas A1 and A2. In a second step, this will be used to determine optimal combinations of new lightweight materials and alternative propulsion systems.


Prof. Dr. Paolo Ermanni
Head of Laboratory of Composite Materials
and Adaptive Structures at ETH Zürich
permanni@ethz.ch / 044 633 63 06

ETH Zürich
Laboratory of Composite Materials and Adaptive Structures, IDMS-CMAS
Prof. Dr. Paolo Ermanni, Coordinator

EPFL
Laboratory for Processing of Advanced Composites, LPAC
Prof. Dr. Véronique Michaud, Deputy Coordinator

Fachhochschule Nordwestschweiz FHNW
Institut für Kunststofftechnik, IKT
Dr. Christian Rytka

ETH Zürich
Aerothermochemistry and Combustion Systems Laboratory, LAV
Prof. Dr. Konstantinos Boulouchos

ETH Zürich
Laboratory for Complex Materials, CML
Prof. Dr. André Studart

New Routes to lightweight composites

  • Define demonstrator, list of agreed parameters
  • Demonstrator(s) of composite parts via proposed routes ready
  • Demonstrator(s) of composite parts via proposed routes benchmarked.
  • Processing routes for approaches (a)-(c) established and demonstrated.


Bio-inspired lightweight composites

  • Microstructural parameter study. Promising approach(es) identified.
  • Demonstrator parts fabricated and evaluated using promising approach(es).


Thermal Management

  • Environmental footprint and hygrothermal performance of insulation strategies.

Thermoplastic composites via low viscosity melt impregnation

Direct consolidation via hybrid yarn route

  • Manufacturing infrastructure [12, 2017]
  • Consolidation models for hybrid yarns [6, 2018]
  • Report on bicomponent fiber manufacturing [6, 2018]
  • Report on direct consolidation on hybrid yarns [12, 2018]
  • Industrial demonstration of hybrid yarn consolidation [12, 2020]
  • Report on industrial demonstration of hybrid yarn consolidation [12, 2020]

Cost and life cycle inventory of processing routes

  • Life cycle inventory is complete [12, 2019]
  • Database with life cycle inventory for processes under consideration [12, 2019]
  • Life cycle and cost performances identified [12, 2020]
  • Report of life cycle and cost performance of processes [12, 2020]

Development of bio-inspired materials and structures

  • Bioinspired ceramic composites dissemination milestone [1, 2018]
  • Report on structure property relation of bioinspired ceramic composites [1, 2018]
  • Engineering application scale-up milestone [7, 2019]
  • Engineering application demonstration milestone [12, 2020]
  • Report on heterogeneous architecture of bioinspired composites [12, 2020]

Modelling of propulsive and non-propulsive energy demand

  • Report/paper on calibrated and validated real-world energy demand model [12, 2018]
  • Model for passenger cars validated [1, 2018]
  • Model for heavy-duty vehicles available [6, 2018]
  • Calibrated and validated real-world energy demand model available for design development [12, 2018]

Minimizing vehicular energy demand through design

  • Extended simulation framework for optimal design of vehicles available including thermal considerations for future mobility demand is available [6, 2019]
  • Documentation on extended framework [6, 2019]
  • Publication of design strategies and new designs available [12, 2020]

Master and semester project reports

V. Bersier, Effect of Manufacturing Parameters on Thermo-mechanical Deformation of Composite Structures Using the powerRibs Technology, EPFL Master Thesis in collaboration with B-Comp, March 2016

T. Bouchet, Processing and Characterization of composites with low viscosity thermoplastic matrix, EPFL Master semester project report, June 2015.

R.Triguera, Improved fabric permeability for a melt-RTM process, EPFL Master semester project report, January 2016.

2020

Volk, M., Arreguin, S., Ermanni, P., Wong, J., Bar, C., & Schmuck, F. (2020). Pultruded thermoplastic composites for high voltage insulator applications. IEEE Transactions on Dielectrics and Electrical Insulation, 27(4), 1280–1287. https://doi.org/10.1109/TDEI.2020.008724


2019

Çabukoglu, E., Georges, G., Küng, L., Pareschi, G., & Boulouchos, K. (2019). Fuel cell electric vehicles: An option to decarbonize heavy-duty transport? Results from a Swiss case-study. Transportation Research Part D: Transport and Environment, 70, 35–48. https://doi.org/10.1016/j.trd.2019.03.004

Caglar, B., Tekin, C., Karasu, F., & Michaud, V. (2019). Assessment of capillary phenomena in liquid composite molding. Composites Part A: Applied Science and Manufacturing, 120, 73–83. https://doi.org/10.1016/j.compositesa.2019.02.018

Grossman, M., Pivovarov, D., Bouville, F., Dransfeld, C., Masania, K., & Studart, A. R. (2019). Hierarchical Toughening of Nacre-Like Composites. Advanced Functional Materials, 29(9), 1806800. https://doi.org/10.1002/adfm.201806800

Kabachi, M. A., Danzi, M., Arreguin, S., & Ermanni, P. (2019). Experimental study on the influence of cyclic compaction on the fiber-bed permeability, quasi-static and dynamic compaction responses. Composites Part A: Applied Science and Manufacturing, 125, 105559. https://doi.org/10.1016/j.compositesa.2019.105559

Kleger, N., Cihova, M., Masania, K., Studart, A. R., & Löffler, J. F. (2019). 3D Printing of Salt as a Template for Magnesium with Structured Porosity. Advanced Materials, 31(37), 1903783. https://doi.org/10.1002/adma.201903783

Küng, L., Bütler, T., Georges, G., & Boulouchos, K. (2019). How much energy does a car need on the road? Applied Energy, 256, 113948. https://doi.org/10.1016/J.APENERGY.2019.113948

Lebaupin, Y., Friedli, J., Caglar, B., Piccand, M., Pasquier, R., & Michaud, V. (2019). Crushing and intrusion resistance improvement of aluminum beams by carbon/epoxy composite patches. Composite Structures, 226, 111235. https://doi.org/10.1016/j.compstruct.2019.111235

Salvatori, D., Caglar, B., & Michaud, V. (2019). 3D spacers enhance flow kinetics in resin transfer molding with woven fabrics. Composites Part A: Applied Science and Manufacturing, 119, 206–216. https://doi.org/10.1016/j.compositesa.2019.01.023

Studer, J., Dransfeld, C., Jauregui Cano, J., Keller, A., Wink, M., Masania, K., & Fiedler, B. (2019). Effect of fabric architecture, compaction and permeability on through thickness thermoplastic melt impregnation. Composites Part A: Applied Science and Manufacturing, 122, 45–53. https://doi.org/10.1016/J.COMPOSITESA.2019.04.008

Woigk, W., Fuentes, C. A., Rion, J., Hegemann, D., van Vuure, A. W., Dransfeld, C., & Masania, K. (2019). Interface properties and their effect on the mechanical performance of flax fibre thermoplastic composites. Composites Part A: Applied Science and Manufacturing, 122, 8–17. https://doi.org/10.1016/J.COMPOSITESA.2019.04.015

Woigk, W., Fuentes, C. A., Rion, J., Hegemann, D., van Vuure, A. W., Kramer, E., Dransfeld, C., & Masania, K. (2019). Fabrication of flax fibre-reinforced cellulose propionate thermoplastic composites. Composites Science and Technology, 183, 107791. https://doi.org/10.1016/j.compscitech.2019.107791


2018

Aegerter, N., Schneeberger, C., Arreguin, S., Wong, J. C. H., & Ermanni, P. (2018). A Scalable Process for Making Hybrid Bicomponent Fibers for the Efficient Manufacturing of Thermoplastic Composites. 4th International Conference & Exhibition on Thermoplastic Composites (ITHEC 2018). https://www.research-collection.ethz.ch/handle/20.500.11850/300733

Caglar, B., Salvatori, D., Sozer, E. M., & Michaud, V. (2018). In-plane permeability distribution mapping of isotropic mats using flow front detection. Composites Part A: Applied Science and Manufacturing, 113, 275–286. https://doi.org/10.1016/J.COMPOSITESA.2018.07.036

Eichenhofer, M., Arreguin, S., Wong, J. C. H., & Ermanni, P. (2018). Optimizing the thermoplastic welding properties in an FRTPC additive manufacturing process. Proceedings ITHEC 2018, B4. https://www.research-collection.ethz.ch/handle/20.500.11850/300738

Eichenhofer, M., Wong, J. C. H., & Ermanni, P. (2018). Exploiting cyclic softening in continuous lattice fabrication for the additive manufacturing of high performance fibre-reinforced thermoplastic composite materials. Composites Science and Technology, 164, 248–259. https://doi.org/10.1016/J.COMPSCITECH.2018.05.033

Gantenbein, S., Masania, K., Woigk, W., Sesseg, J. P. W., Tervoort, T. A., & Studart, A. R. (2018). Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature, 561(7722), 226–230. https://doi.org/10.1038/s41586-018-0474-7

Grossman, M., Bouville, F., Masania, K., & Studart, A. R. (2018). Quantifying the role of mineral bridges on the fracture resistance of nacre-like composites. Proceedings of the National Academy of Sciences of the United States of America, 115(50), 12698–12703. https://doi.org/10.1073/pnas.1805094115

Hausmann, M. K., Rühs, P. A., Siqueira, G., Läuger, J., Libanori, R., Zimmermann, T., & Studart, A. R. (2018). Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. ACS Nano, 12(7), 6926–6937. https://doi.org/10.1021/acsnano.8b02366

Holzer, L., Pecho, O., Schumacher, J., Marmet, P., Stenzel, O., Büchi, F. N., Lamibrac, A., & Münch, B. (2017). Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL. Electrochimica Acta, 227, 419–434. https://doi.org/10.1016/J.ELECTACTA.2017.01.030

Keller, A., Dransfeld, C., & Masania, K. (2018). Flow and heat transfer during compression resin transfer moulding of highly reactive epoxies. Composites Part B: Engineering, 153, 167–175. https://doi.org/10.1016/J.COMPOSITESB.2018.07.041

Kokkinis, D., Bouville, F., & Studart, A. R. (2018). 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients. Advanced Materials, 1705808. https://doi.org/10.1002/adma.201705808

Küng, L., Bütler, T., Georges, G., & Boulouchos, K. (2018). Decarbonizing passenger cars using different powertrain technologies: Optimal fleet composition under evolving electricity supply. Transportation Research Part C: Emerging Technologies, 95, 785–801. https://doi.org/10.1016/j.trc.2018.09.003

Leal, A. A., Neururer, O. A., Bian, A., Gooneie, A., Rupper, P., Masania, K., Dransfeld, C., & Hufenus, R. (2018). Interfacial interactions in bicomponent polymer fibers. Polymer, 142, 375–386. https://doi.org/10.1016/J.POLYMER.2018.03.055

Salvatori, D., Caglar, B., Teixidó, H., & Michaud, V. (2018). Permeability and capillary effects in a channel-wise non-crimp fabric. Composites Part A: Applied Science and Manufacturing, 108, 41–52. https://doi.org/10.1016/J.COMPOSITESA.2018.02.015

Studer, J., Keller, A., Leone, F., Stefaniak, D., Dransfeld, C., & Masania, K. (2018). Local reinforcement of aerospace structures using co-curing RTM of metal foil hybrid composites. Production Engineering, 1–7. https://doi.org/10.1007/s11740-018-0794-3


2017

Bouville, F., & Studart, A. R. (2017). Geologically-inspired strong bulk ceramics made with water at room temperature. Nature Communications, 8, 14655. https://doi.org/10.1038/ncomms14655

Eichenhofer, M., Wong, J. C. H., & Ermanni, P. (2017). Continuous lattice fabrication of ultra-lightweight composite structures. Additive Manufacturing, 18, 48–57. https://doi.org/10.1016/J.ADDMA.2017.08.013

Geissberger, R., Maldonado, J., Bahamonde, N., Keller, A., Dransfeld, C., & Masania, K. (2017). Rheological modelling of thermoset composite processing. Composites Part B: Engineering, 124, 182–189. https://doi.org/10.1016/J.COMPOSITESB.2017.05.040

Grossman, M., Bouville, F., Erni, F., Masania, K., Libanori, R., & Studart, A. R. (2017). Mineral Nano-Interconnectivity Stiffens and Toughens Nacre-like Composite Materials. Advanced Materials, 29(8), 1605039. https://doi.org/10.1002/adma.201605039

Keller, A., Chong, H. M., Taylor, A. C., Dransfeld, C., & Masania, K. (2017). Core-shell rubber nanoparticle reinforcement and processing of high toughness fast-curing epoxy composites. Composites Science and Technology, 147, 78–88. https://doi.org/10.1016/J.COMPSCITECH.2017.05.002

Roux, M., Eguémann, N., Dransfeld, C., Thiébaud, F., & Perreux, D. (2017). Thermoplastic carbon fibre-reinforced polymer recycling with electrodynamical fragmentation. Journal of Thermoplastic Composite Materials, 30(3), 381–403. https://doi.org/10.1177/0892705715599431

Rueppel, M., Rion, J., Dransfeld, C., Fischer, C., & Masania, K. (2017). Damping of carbon fibre and flax fibre angle-ply composite laminates. Composites Science and Technology, 146, 1–9. https://doi.org/10.1016/J.COMPSCITECH.2017.04.011

Schneeberger, C., Wong, J. C. H., & Ermanni, P. (2017). Hybrid bicomponent fibres for thermoplastic composite preforms. Composites Part A: Applied Science and Manufacturing, 103, 69–73. https://doi.org/10.1016/J.COMPOSITESA.2017.09.008

Szmyt, W., Vogel, S., Diaz, A., Holler, M., Gobrecht, J., Calame, M., & Dransfeld, C. (2017). Protective effect of ultrathin alumina film against diffusion of iron into carbon fiber during growth of carbon nanotubes for hierarchical composites investigated by ptychographic X-ray computed tomography. Carbon, 115, 347–362. https://doi.org/10.1016/J.CARBON.2016.12.085

Wong, J. C., Blanco, J. M., & Ermanni, P. (2017). Filament winding of aramid/PA6 commingled yarns with in situ consolidation. Journal of Thermoplastic Composite Materials, 89270571770652. https://doi.org/10.1177/0892705717706528


2016

Bargardi, F. L., Le Ferrand, H., Libanori, R., & Studart, A. R. (2016). Bio-inspired self-shaping ceramics. Nature Communications, 7, 13912. https://doi.org/10.1038/ncomms13912

Keller, A., Masania, K., Taylor, A. C., & Dransfeld, C. (2016). Fast-curing epoxy polymers with silica nanoparticles: properties and rheo-kinetic modelling. Journal of Materials Science, 51(1), 236–251. https://doi.org/10.1007/s10853-015-9158-y

Le Ferrand, H., Bolisetty, S., Demirörs, A. F., Libanori, R., Studart, A. R., & Mezzenga, R. (2016). Magnetic assembly of transparent and conducting graphene-based functional composites. Nature Communications, 7, 12078. https://doi.org/10.1038/ncomms12078

Libanori, R., Carnelli, D., Rothfuchs, N., Binelli, M. R., Zanini, M., Nicoleau, L., … Studart, A. R. (2016). Composites reinforced via mechanical interlocking of surface-roughened microplatelets within ductile and brittle matrices. Bioinspiration & Biomimetics, 11(3), 36004. https://doi.org/10.1088/1748-3190/11/3/036004

Minas, C., Carnelli, D., Tervoort, E., & Studart, A. R. (2016). 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics. Advanced Materials, 28(45), 9993–9999. https://doi.org/10.1002/adma.201603390

Niebel, T. P., Carnelli, D., Binelli, M. R., Libanori, R., & Studart, A. R. (2016). Hierarchically roughened microplatelets enhance the strength and ductility of nacre-inspired composites. Journal of the Mechanical Behavior of Biomedical Materials, 60, 367–377. https://doi.org/10.1016/J.JMBBM.2016.02.008

Studer, J., Dransfeld, C., & Masania, K. (2016). An analytical model for B-stage joining and co-curing of carbon fibre epoxy composites. Composites Part A: Applied Science and Manufacturing, 87, 282–289. https://doi.org/10.1016


2015

Carnelli, D., Libanori, R., Feichtenschlager, B., Nicoleau, L., Albrecht, G., & Studart, A. R. (2015). Cement-based composites reinforced with localized and magnetically oriented Al2O3 microplatelets. Cement and Concrete Research, 78, 245–251. https://doi.org/10.1016/J.CEMCONRES.2015.08.003

!!! Dieses Dokument stammt aus dem ETH Web-Archiv und wird nicht mehr gepflegt !!!
!!! This document is stored in the ETH Web archive and is no longer maintained !!!