

RELEVANT PARAMETERS FOR THE TRANSITION OF MOBILITY TO A "DECARBONIZED WORLD"

MICHAEL FRAMBOURG VOLKSWAGEN AG; GROUP RESEARCH POWERTRAIN

ZÜRICH | 4TH ANNUAL CONFERENCE - SCCER MOBILITY | 15.09.2017

GLOBAL TRENDS INFLUENCING MOBILITY IN THE 21ST CENTURY

Digitalisation

Hydrogen

Downsizing

Plug-In-Hybrid

CO₂ Emissions

Climate change

Urbanisation

Peak Oil

Shared Mobility

Urban Low Emission Zones

sustainability Electromobility

Connected Car

Battery technology

Automated Driving

Lithium-Ion

Car-Sharing

Megacities

TIPPING POINTS IN THE GLOBAL CLIMATE SYSTEM

DKRZ: Deutsches Klimarechenzentrum

- Increase in extreme, unexpected environmental disasters and weatherevents
- climate- and environmental objectives remain most relevant driver for technical development
- High strain on reduction of emissions as well as fuel consumption / increase in efficiency
- Volatility in energy sources due to the energy transition

ENVIRONMENTAL- AND CLIMATE PROTECTION

Source: Jackson et al 2015b; Global Carbon Budget 2016

Data: CDIAC/GCP (Carbon Dioxide Information Analysis Center / Global Carbon Project)

Volkswagen AG | Group Research | M. Frambourg

GERMANY: CLIMATE ACTION PLAN 2050

Area of activity	1990	2014	2030	2030	
	Figures in million t. CO ₂ equivalent			Reduction vs. 1990	
Energy industry	466	358	175 – 183	62 – 61%	
Buildings	209	119	70 – 72	67 – 66%	
Transport	163	160	95 – 89	42 – 40%	
Industry	283	181	140 – 143	51 – 49%	
Agriculture	88	72	58 – 61	34 – 31%	
Subtotal	1,209	890	538 – 557	56 – 54%	
Other	39	12	5	87%	
Total	1,248	902	543 – 562	56 – 55%	

Source: Climate Action Plan 2050, p 26 f.

IS GERMANY REALLY A PIONEER IN CLIMATE PROTECTION?

Greenhouse gas emissions

in Germany from 1990 until 2016

Source: German Federal Environmental Agency, National Greenhouse Gas Inventories 1990 to 2015 (status 02/2017) and estimate for 2016 (status 03/2017)

ENVIRONMENTAL AND CLIMATE PROTECTION IN THE TRANSPORTATION SECTOR

Share of primary energy source [%]

in Germany since 2009

Source: AGEB 03/2017 Source: Zukunft Erdgas e.V. (own work 2016)

ENVIRONMENTAL AND CLIMATE PROTECTION IN THE TRANSPORTATION SECTOR

Source: AGEB 03/2017 Source: Zukunft Erdgas e.V. (own work 2016)

Source: Volkswagen Group Research

¹⁾ Assumption BAT: Natural gas from Norway with zero biogas content 2) Renewable Energy Directive (EU) 3) Methane from wind energy as per Audi e-gas facility in Werlte 4) Calculated with wind energy 5) WtW fig with 7% biodiesel or 5% bioethanol in acc. with EN 590 and EN 228, spec. CO₂ reduction of biofuels is 35% in acc. with EU directive 2009/28/EC

Source: Volkswagen Group Research

¹⁾ Assumption BAT: Natural gas from Norway with zero biogas content ²⁾ Renewable Energy Directive (EU) ³⁾ Methane from wind energy as per Audi e-gas facility in Werlte ⁴⁾ Calculated with wind energy ⁵⁾ WtW fig with 7% biodiesel or 5% bioethanol in acc. with EN 590 and EN 228, spec. CO₂ reduction of biofuels is 35% in acc. with EU directive 2009/28/EC

Source: Volkswagen Group Research

1) ICE = Internal Combustion Engine

POSSIBLE CO₂-REDUCED FUELS FOR THE MOBILITY SECTOR

CLASSIFICATION OF BIOFUELS BASED ON COMPETITION OF **SOURCES**

Туре	Examples		Not in competition with		
	Ethanol from sugar beet	Food	Agric. area	Biomass	
 Conversion/use of sugar, starch and oil 	Ethanol from corn/cropHVO*				
Conversion of cellulose	Biomethane from grass silageDiesel from wood	*	×	3¢	
 Conversion of cellulose based on waste material by algae/bakteriea/yeast 	Ethanol from strawBiomethane from strawDiesel from wood waste			36	
 "Green Electricity" as basis Hydrocarbons from modified photosynthesis	Power-to-GasPower-to-LiquidEthanol			*	

* HVO Hydrotreated Vegetable Oil

OPTIONS FOR STORAGE AND USE OF "GREEN ELECTRICITY"

CUSTOMER VALUE >TIME FOR REFUELING/RELOADING<

Gasoline/Diesel

27.000 kW
(ca. 50 dm³/min)

1.000 km/min

Electricity

Charging station:

3,3 - 200 kW
(Three-phase 400V)

0,3 - 20 km/min

Hydrogen

Filling station:

2.000 kW
(ca. 1 kg/min)

H₂

100 km/min

INFRASTRUCTURAL REQUIREMENTS ON GERMAN "AUTOBAHN"

INFRASTRUCTURAL REQUIREMENTS ON GERMAN "AUTOBAHN"

INFLUENCE OF SYSTEM LOAD ON THE DRIVING RANGE OF A BEV

Golf VII (2015), 1510 kg

85 kW, 270 Nm, 12000 min⁻¹ electric Motor

Gearbox 1-Gear, koaxial

Battery 24,22 kWh

^{*1)} Vehicle and component parameters referring to the E-Golf

SPECIFIC INFLUENCE OF SYSTEM LOAD ON CONSUMPTION (NEDC)

^{*1)} No in-production powertrains, qualitative comparison based on Golf VII BMT

^{*2)} Coefficient of Performance, estimated for AC-system

SPEED-DEPENDANT DRIVING RANGE IN REAL-WORLD-DRIVING

If constant driving speed > O
then higher consumption as in NEDC

VW Golf VII BMT

Conventional Gasoline Battery Electric FuelCell electric Drivetrain *1) (BEV) Drivetrain*1) (FCEV) Drivetrain *1) (ICE) 85 kW el. Motor, 1-gear 85 kW el. Motor, 1-gear Powertrain 90 kW SI-ICE, DSG 24 kWh Battery 90 kW FuelCell Tank volume 22 kWh achievable 3 kg Hydrogen 45 I Gasoline (ROZ98) **NEDC** Range 186 km 412 km 890 km Max. speed 140 km/h*2) 160 km/h*2) 205 km/h*3)

^{*1)} No in-production powertrains, qualitative comparison based on Golf VII BMT

^{*2)} Maximum speed determined by max. speed of chosen electric engine Volkswagen AG | Group Research | M. Frambourg

^{*3)} Maximum speed determined by ICE rated power

WHAT WILL BE THE APPROPRIATE PORTFOLIO FOR A GLOBAL CAR MANUFACTURER BEYOND 2030?

Concerning:

- CO2-footprint
 - alligned with local and global options/restrictions out of the future energy supply portfolio
- Emission behaviour
 - "local" RDE instead of cycle-based; lowest (technically) possible emissions as a "must"
- Various customer demands
 - Prolonged SUV-Trend; market-specific customs and practices; infrastructure in filling/charging stations
- Costs
 - Product related as well as R&D and capital expenditures (capex)
- •

POWERTRAIN DISTRIBUTION 2030 WORLDWIDE

- ► Coexistence of all types of Powertrains still remains in 2030
- ► **Gasoline Engines** especially in connection with Hybrid Systems remain dominant on the global market
- ► In average of the results of the different studies BEV overtake Diesel
- ► Estimations concerning **market** penetration by BEV shows a relevant dispersal (7%-27%)
- Some studies forecast FCEV to reach first relevant market shares in 2030

Sources: 20 global studies by Ricardo, McKinsey, BCG, Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag, Center for International Automobile Management RWTH Aachen, Bosch, IHS Global, Navigant Research, etc.

Comment: not all years in all studies available, population of every single year different; mean values normed to 100%;

*small sampe, only 3 of 20 studies relate on xNG

VOLKSWAGENS PATHWAY TO A SUSTAINABLE MOBILITY CO2 ROADMAP AND BROAD TECHNOLOGY PORTFOLIO

Technologies and energy sources

VOLKSWAGEN

AKTIENGESELLSCHAFT

THANK YOU FOR YOUR ATTENTION!